有理数的乘法教学设计

时间:2025-06-27 15:52:20
有理数的乘法教学设计

有理数的乘法教学设计

作为一无名无私奉献的教育工作者,时常需要用到教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。写教学设计需要注意哪些格式呢?下面是小编收集整理的有理数的乘法教学设计,仅供参考,欢迎大家阅读。

有理数的乘法教学设计1

教学目标

1、知识与技能

使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。

2、过程与方法

通过对问题的探索,培养观察、分析和概括的.能力。

3、情感、态度与价值观

能面对数学活动中的困难,有学好数学的自信心。

教学重点难点

重点:熟练运用运算律进行计算。

难点:灵活运用运算律。

教与学互动设计

(一)创设情境,导入新课

想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好。那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?

做一做(出示胶片)你能运算吗?

(1)234(-5)

(2)23(-4)(-5)

(3)2(-3)(-4)(-5)

(4)(-2)(-3)(-4)(-5)

(5)-1302(-20xx)0

由此我们可总结得到什么?

(二)合作交流,解读探究

交流讨论不难得到结论:几个不为0的数乘,积的符号由负因数这个数决定。当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘。

注意只要有一个因数为0,则积为0。

有理数的乘法教学设计2

1.4.1有理数的乘法(第一课时)

1.教材分析

1.1教材的地位与作用

教材借助归纳验证的数学思想,结合学生已有知识,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。然后通过具体例子说明如何具体运用法则进行计算。接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。

1.2教材的重难点分析 1.2.1教学重点

运用有理数乘法法则正确进行计算。 1.2.2教学难点

有理数乘法法则的探索过程,符号法则及对法则的理解。 2.教学目标分析 2.1知识与技能

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算,并初步理解有理数乘法法则的合理性;

2.2过程与方法

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。 2.3 情感态度与价值观

通过教材给出的气温变化问题,让学生认识到数学来源于实践并反作用于实践。 3.学情分析

本节课是学生在小学本已学过正数与零的乘法运算,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。因此,在探索有理数乘法法则的过程中,学生会比较容易找出规律,对于几个不为0的有理数相乘,学生也容易抓住其运算的两步骤,即先定符号,再将绝对值相乘。

附:板书设计

“有理数乘法法则”的教学设计,一般有两类:一是列举简单事例,尽快给出法则,组织学生用较多的是练习法则、背法则,以求熟练地掌握和运用法则;另一类是让学生体验法则的探索过程,注重培养学生的观察问题、发现问题的`能力,猜测,验证的能力。引入部分以及归纳、有理数相乘的法则

前一类可能会取得较好的近期效果,但只注重知识技能的培养,忽视了学生数学能力的培养

有理数乘法两步骤 练习处

和发展;后者不仅重视了学生思维能力及素质的培养,还能提高学生的学习兴趣。本数学设计采用的是较为适中的方法,没有教材中引入的那么繁琐,但同时兼顾了上述两类设计的优点。

“有理数乘法法则”的教学,在性质上属于定义教学,看似容易,但实际上却是难教又难学。半课例采用的是让学生观察、实践、合作探讨、发现的探索式学习方法,引导学生独立思考,合作交流,体验数学问题解决的过程,学会如何归纳和总结。

“有理数乘法法则”的教学中,必须解决的3个难点是:如何自然地引入带有负数的乘法;怎样体现负负得正的合理性与必要性;怎样说明有理数与1和0相乘的结果。

在整个教学过程中,教师始终注意运用多种形式调动学生的学习积极性和主动性,以自主学习、合作交流的方式,把学习的主动权交给了学生,使学生成为学习的主体,激发学习积极性。通过小组比赛和个人抢答,既培养了合作精神,又增强了竞争意识。

在数学教学中,不仅要求学生掌握基础知识的应用技能,而且要重视对学生的数学思维

方法和创造思维能力的培养。学习从数学的角度提出问题、理解问题。体验问题解决的过程,使学生在学习中感受成功的喜悦,建立自信心,从而积极参加与数学学习活动,激发学生强烈的求知欲。

有理数的乘法教学设计3

一、 教学目标

1、 知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、 能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、 情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

二、 教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

三、 教学过程

1、 创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

学生:26米。

教师:能写出算式吗?学生:……

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

2、 小组探索、归纳法则

(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

① 2 ×3

2看作向东运动2米,×3看作向原方向运动3次。

结果:向 运动 米

2 ×3=

② -2 ×3

-2看作向西运动2米,×3看作向原方向运动3次。

结果:向 运动 米

-2 ×3=

③ 2 ×(-3)

2看作向东运动2米,×(-3)看作向反方向运动3次。

结果: ……此处隐藏3749个字……有理数减法法则,能正确完成减法到加法的转化

3、关键:正确完成减法到加法的转化

四、教学过程

一、复习提问,新课引入

1、计算、

(1)(-2.6)+(-3.1)(2)(-2)+3

2、填空、

(1)+6=20(2)20+=17

(3)+(-2)=5(4)(-20)+=-6

五、新授

实际问题中有时还要涉及有理数的减法,例如,某地一天的气温是-3℃~4?℃,这天的温差(最高气温减最低气温,单位:℃)就是4-(-3),?这里用到正数与负数的减法,你会计算它吗?(鼓励学生探索)

可以先从温度计看出4℃比-3℃高7℃

另外,我们知道减法和加法是互为逆运算。计算4-(-3),?就是要求出一个数x,使x与-3的和等于4,因为7+(-3)=4,所以

4-(-3)=7①

另外4+(+3)=7,②

比较①、②两式,你发现了什么?

发现:4-(-3)=4+(+3)

这就是说减法可以转化为加法,如何转化呢?

减-3相当于加3,即加上“-3”的相反数

比较上面的`式子,计算下列各式:

50-20=50+(-20)=

50-10=50+(-10)=

50-0=50+0=

50-(-10)=50+10=

50-(-20)=50+20=

这些数减-3的结果与它们加+3的结果仍然相同

归纳:通过上述讨论,得出:

有理数的减法可以转化为加法来进行,“相反数”是转化的桥梁。有理数减法法则:

减去一个数,等于加上这个数的相反数

用式子表示为:a-b=a+(-b)

注意:减法在运算时有2个要素要发生变化。

1减号变加号

2减数变相反数

例4:计算:

(1)-3-(-5)(2)7.2-(-4.8)

(3)0 – 8(4)(-5)-0

分析:以上是有理数的减法,按减法法则,把减法转化为加法

11-3(--5)2411113例3:计算:(1) -0.257-4.47(4)(-3)-5=(-3)+(-5)=-8 24244例2:计算:(1) (-2.5) – 5.9(2)

强调:减号变加号、减数变相反数,必须同时改变,(4)?题中减数的符号为“+”号,省略没有定

综合运用:课本25页,6题

六、课堂练习

1:计算:

(1) 6-9(2)(+4)-(-7)

(3)(-5)-(-8)(4)0-(-5)

(5)(-2.5)-5.9(6)1.9-(-0.6)

2、列式计算:

(1)比2 ℃低8 ℃的温度

(2)比-3 ℃低6 ℃的温度

3、课本26页7、8、10题略

2、差数一定比被减数小吗?

提示:不一定,例如(-7)-(-5)=(-7)+(+5)=-2,-2>-7

七、课堂小结

引进负数后,任意两个有理数都可以求出它们的差,结果可能为正数(大数减去小数),也可能为负数(小数减去大数),还可能为0(相等的两数相减),学习有理数减法,关键在于处理好两个“变”字;

(1)改变运算符号──即把减法转化为加法

(2)改变减数的符号──即减数变为它的相反数,这两个“变”要同时进行,而被减数不变

八、作业布置

1、课本第25页至第26页,习题1、3第3、4、11、12题。

九、板书设计:

有理数的乘法教学设计8

一、知识与能力

掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力

二、过程与方法

经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算

三、情感、态度、价值观

培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性

四、教学重难点

一、重点:熟练进行有理数的乘除运算

二、难点:正确进行有理数的乘除运算

预习导学

通过看课本§1.4的内容,归纳有理数的.乘法法则以及乘法运算律

五、教学过程

一、创设情景,谈话导入

我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律

二、精讲点拨质疑问难

根据预习内容,同学们回答以下问题:

1、有理数的乘法法则:

(1)同号两数相乘

(2)异号两数相乘

(3)0与任何自然数相乘,得

2、有理数的乘法运算律:

(1)乘法交换律:ab=

(2)乘法结合律:(ab)c=

(3)乘法分配律:(a+b)c=

3、有理数的除法法则:

除以一个不等于0的数,等于乘这个数的

比较有理数的乘法,除法法则,发现可能转化为

有理数的乘法教学设计9

一、教学目标

1、使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;

2、培养学生观察、归纳、概括及运算能力

3 使学生掌握多个有理数相乘的积的符号法则;

二、教学重点和难点

重点:有理数乘法的运算。

难点:有理数乘法中的符号法则。

三。教学手段

现代课堂教学手段

四。教学方法

启发式教学

五、教学过程

(一)、研究有理数乘法法则

问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

解①32=6

答:上升了6厘米。

问题2 水库的水位平均每小时上升-3厘米,2小时上升多少厘米?

解:(-3)2=-6

答:上升-6厘米(即下降6厘米)。

引导学生比较①,②得出:

把一个因数换成它的相反数,所得的`积是原来的积的相反数。

这是一条很重要的结论,应用此结论,3(-2)=?(-3)(-2)=?(学生答)

把3(-2)和①式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积6的相反数-6,即3(-2)=-6.

把(-3)(-2)和②式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积-6的相反数6,即(-3)(-2)=6.

《有理数的乘法教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式